From Photons to Fuels
We provide the basic research to enable a revolution in the conversion of sunlight into storable liquid fuels

Partner Institutions
UNC Chapel Hill
Yale University
Brookhaven National Laboratory
University of Pennsylvania
North Carolina State University
Emory University

CHASE
CENTER for HYBRID APPROACHES in SOLAR ENERGY to LIQUID FUELS

Director
Gerald J. Meyer
gjmeyer@email.unc.edu

Deputy Director
Jillian L. Dempsey
dempseyj@email.unc.edu

Managing Director
Catherine M. Heyer
cmheyer@unc.edu

Center for Hybrid Approaches in Solar Energy to Liquid Fuels (CHASE)

Chemistry Department
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599–3290
CHASE@email.unc.edu
(919) 962-2304
http://chase.unc.edu
CHASE
A Collaborative, Integrated, Multi-disciplinary, Inter-Institutional, Team-Based Hub

The Center for Hybrid Approaches in Solar Energy to Liquid Fuels (CHASE) is headquartered at the University of North Carolina at Chapel Hill, one of the top five public research universities in the US, with research partners at Yale University, Brookhaven National Laboratory, the University of Pennsylvania, North Carolina State University and Emory University.

MISSION
To develop molecule/material hybrid photoelectrodes for cooperative sunlight-driven generation of liquid fuels from carbon dioxide, nitrogen, & water

SYNERGISTIC THRUSTS
1. Understand fundamental principles & design strategies that enable integration of durable semiconductor light absorbers with molecular catalysts to drive liquid fuel production (INTEGRATION)
2. Tailor local environment around catalyst on a molecular scale to direct reactivity along desired pathways (MICROENVIRONMENTS)
3. Develop design principles that enable cooperative integrated photosynthesis of liquid fuels through multi-catalyst cascades (CASCADES)

WORLD-CLASS CAPABILITIES
- Catalyst Benchmarking & Databases
- Spectroscopy & Photoelectrochemistry
- Synthesis
- Solar Fuels Product Analysis
- Materials Fabrication & Characterization
- Surface and Materials Analysis
- Theory & Artificial Intelligence

CHASE
A Collaborative, Integrated, Multi-disciplinary, Inter-Institutional, Team-Based Hub

Supported by the US Department of Energy, Office of Basic Energy Sciences, the Center for Hybrid Approaches in Solar Energy to Liquid Fuels, CHASE, is conducting fundamental research on capturing sunlight to drive solar fuel reactions.

CHASE efforts focus on fundamental science, utilizing a broad multidisciplinary approach in a highly collaborative setting drawing on expertise across a broad range of disciplines in chemistry, physics, and materials science.

Pairing light-absorbing properties of semiconductor materials with selective fuel-producing reactivity of molecular catalysts, CHASE will advance a new paradigm of liquid solar fuels generation. This vast, mostly unexplored space at the intersection between molecular catalysts and heterogeneous materials presents unique opportunities for breakthroughs in photocatalyst durability and access to high-octane liquid fuels.

A DOE Fuels from Sunlight Energy Innovation Hub

Supported by the US Department of Energy, Office of Basic Energy Sciences, the Center for Hybrid Approaches in Solar Energy to Liquid Fuels, CHASE, is conducting fundamental research on capturing sunlight to drive solar fuel reactions.

CHASE efforts focus on fundamental science, utilizing a broad multidisciplinary approach in a highly collaborative setting drawing on expertise across a broad range of disciplines in chemistry, physics, and materials science.

Pairing light-absorbing properties of semiconductor materials with selective fuel-producing reactivity of molecular catalysts, CHASE will advance a new paradigm of liquid solar fuels generation. This vast, mostly unexplored space at the intersection between molecular catalysts and heterogeneous materials presents unique opportunities for breakthroughs in photocatalyst durability and access to high-octane liquid fuels.